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Abstract 
A discussion is given of the symmetry groups of 
quasiperiodic systems. This is done in a formalism 
that uses space groups with dimension larger than 
three. Three main types are distinguished: modulated 
crystal phases, incommensurate composite structures 
and quasicrystals. For these the differences and 
similarities are discussed and the canonical embed- 
ding in higher-dimensional space is given, which 
requires some generalizations of earlier definitions. 
The equivalence relation between space groups for 
quasiperiodic systems is different from that for 
ordinary space groups, because of the presence of a 
distinct physical space. Apart from higher- 
dimensional space groups, some quasiperiodic sys- 
tems have self-similarity properties. Examples are 
given and the relationship with space-group symmetry 
is discussed. 

1. Introduction 
In the past decades one has found an ever increasing 
number of structures with perfect order, but without 
lattice periodicity. These aperiodic 'crystals' are 
characterized by the fact that their diffraction spots 
are sharp and may be labelled by a finite number of 
indices, although this number may be larger than the 
dimension of the physical space. This means that the 
basis vectors are linearly dependent,  but there is no 
linear combination with integer coefficients of their 
vectors which is zero, apart from the trivial case that 
all coefficients are zero. Such structures have been 
called quasiperiodic. Actually, lattice periodicity is a 
special case of quasiperiodicity. Then, the number of 
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integer indices is equal to the dimension of the space. 
Quasiperiodic systems are by no means rare (Janssen 
& Janner, 1987; Cummins, 1990). Among the minerals 
the common feldspar may have this property, many 
dielectrics, like quartz, show it in a certain tem- 
perature interval, and some years ago one had 
artificially made quasicrystals, which also belong to 
this category. 

One can construct mathematical models of struc- 
tures that are still more general, but nevertheless also 
perfectly ordered. For example, there are functions 
that are almost periodic (in the mathematical sense), 
but not quasiperiodic. (A quasiperiodic function is 
always almost periodic.) There are chains that can 
be constructed on a very simple deterministic 
algorithm, such as the Thue-Morse  chain. Also, regu- 
lar fractals, like the Sierpinski gasket, are perfectly 
ordered, but not quasiperiodic. All these systems 
touch on the border of crystallography and seek a 
generalization of crystallographic concepts. This can 
most easily be done for quasiperiodic systems to 
which we shall restrict our considerations here. 
Because they are in almost every respect similar to 
crystals, we shall call them aperiodic crystals, 
although, as the name indicates, generally they lack 
lattice periodicity. 

Because there is no lattice periodicity the usual 
symmetry description for lattice periodic crystals 
breaks down. However, as we shall see, we can recover 
lattice periodicity because quasiperiodic systems are 
intersections of a lattice periodic system in a higher- 
dimensional space with a hyperplane that represents 
physical space. The symmetry description then comes 
down to the description of the higher-dimensional 
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system. Of course, one can stay in the physical space, 
but since there is a unique correspondence between 
the physical quasiperiodic system and the higher- 
dimensional one (the information content of both is 
the same) it is convenient to go to the unphysical 
higher-dimensional space, because there one can use 
traditional crystallographic concepts (de Wolff, 1974; 
Janner & Janssen, 1977; de Wolff, Janssen & Janner, 
1981). 

The important thing to do is to embed the physical 
system into an appropriate space. Since we can distin- 
guish between different types of quasiperiodic sys- 
tems, we can distinguish between different types of 
embedding as well. This point will be discussed in 
section two. 

The symmetry group of the higher-dimensional sys- 
tem is a space group. One is then faced with the 
problem of when two such groups should be called 
the same. In three-dimensional space, two space 
groups are considered to be the same when they are 
isomorphic or, equivalently, when one can be trans- 
formed into the other by a change of reference frame, 
an afline transformation. This leads to 219 different 
space groups in three dimensions. If one allows only 
affine transformations that do not change the handed- 
ness of the frame, there are 230 space groups, with 
11 enantiomorphic pairs. So the number of space 
groups is fixed by the equivalence relation and this 
in turn is dictated by the possibility of making physi- 
cally a distinction between structures. It is not a priori 
clear what the equivalence relation should be for 
quasiperiodic systems. This problem is addressed 
in §3. 

For certain classes of quasiperiodic systems there 
is an additional symmetry property, self-similarity. 
Scaling transformations play an important role in 
quasicrystals and in tilings, which are models for 
them. These transformations are directly related to 
the space-group symmetry, as will be shown in §4. 

Some of the problems have been discussed before 
(de Wolff, 1974; Janner & Janssen, 1977; de Wolff et 
al., 1981; Janner & Janssen, 1980). Here, we want to 
discuss a tentative unifying picture which generalizes 
earlier techniques. To make the paper self-consistent 
we shall briefly repeat some of the earlier work. 

2. Embedding of quasiperiodic systems 
2.1. Modulated  crystal phase 

The diffraction pattern of a quasiperiodic system 
consists of sharp Bragg peaks at positions that can 
be labelled by a finite number of integers h t , . . . ,  h,. 
This means that a diffraction vector can be written as 

k= Y. hia*, hi integer, (2.1) 
i=l 

where a*,  . . . ,  a* are basis vectors. The collection of 

vectors (2.1) is in principle a dense set; there is no 
minimum distance. However, in practice the set is 
discrete. This means that observed peaks with an 
intensity above a certain threshold are discrete. This 
is because the intensities go to zero for high values 
of the indices. 

If one describes the system with a density function 
p(r),  its Fourier decomposition looks like 

p ( r ) =  Y. fi(k) e x p ( i k . r ) .  (2.2) 
kE M* 

The set of vectors M* consists of all vectors of the 
form (2.1). It is called the Fourier module of p(r). 
The number n of basis vectors is th~ rank of the 
module and its dimension d is the dimension of the 
physical space, usually three, but sometimes two or 
one. 

Such a quasiperiodic function can be obtained from 
a function on an n-dimensional torus. Suppose f is 
a function of n variables and is periodic in each of 
them: 

f ( X l , . . . ,  X,) =f(Xl + 1, X 2 , . . .  , Xn)  = . . .  

= f ( x , , . . . , x , , _ l , X , , + l ) .  

For n mutually irrational numbers a l ,  • • •, a ,  we can 
define a function g(x )  by 

g ( x ) =  f(oe,x,  . . . , oe,x). (2.3) 

The Fourier components of g(x )  then belong 
to wave numbers k = 2 , r (hl /a~ + . . . +  h , , /a , ) ,  where 
h i , . . . ,  h, are integers. In other words, the Fourier 
module of the quasiperiodic function g(x )  has rank 
n and dimension one. One can show that every 
quasiperiodic function is the restriction of a periodic 
function in a number of variables that is equal to the 
rank of the Fourier module. The problem is how to 
construct this periodic function. 

A typical case is that of a displacively modulated 
crystal. The atoms of an ordinary crystal with space- 
group symmetry are displaced in such a way that the 
displacement itself is (quasi-) periodic. If the 
periodicity of "the latter is irrational with respect to 
the periodicity of the starting crystal, which is called 
the basic structure, the modulated crystal is no longer 
periodic, but it is quasiperiodic. If the atoms of the 
basic structure have positions n + rj, where n is a lattice 
vector and rj the position of the j th  atom inside the 
unit cell of A ( j =  1 , . . . , s ,  with s the number of 
atoms in the unit cell), the positions of the atoms in 
the modulated crystal are 

r(nj) = n + u  +uj(n)  

= n + r j +  Y. f i j (q )exp( iq .n ) .  (2.4) 
q~F/* 

The displacement field uj(n) has Fourier module/-/*.  
If (a*, a * , . . . ,  a*) is a basis for the reciprocal lattice 
A* and ( a * + , , . . . , a * )  one for / /* ,  the Fourier 
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module M* of the modulated system has basis 
( a * , . . . ,  a*). In the diffraction pattern the spots may 
be labelled with n integers. 

Associated with the quasiperiodic modulated phase 
is a periodic structure, called the average structure. 
It is obtained from the modulated crystal by bringing 
each atom (2.4) back to a unit cell of A. So the lattice 
coordinates of the points in the unit cell are 

xi(nj)=frac[a*.r~+a*.uj(n)], i= l , . . . ,  d. 
(2.5) 

A simple example of a modulated crystal is given by 

r(nj) = a + rj + Aj sin (q.  n + ~j), j = l , . . . , s .  
(2.6) 

Then a* = q  and n = 4, if the coordinates of q in the 
reciprocal-lattice basis are not all rational. 

Besides the displacive modulation, one may also 
have an occupation modulation: a (possibly dis- 
placed) site may be occupied by atomic species A or 
B, with probability p and 1 -  p, respectively. Or one 
of two sites may be occupied by an atom with prob- 
abilities p and 1 - p .  If this probability is a periodic 
function of position, the system is quasiperiodic. Sup- 
pose the probability of finding atom A in the position 
n+rj is given by p j (q .n) ,  where pj satisfies pj(x)= 
p j ( x + l ) ,  and the probability for an atom B being 
there by 1 - p j ( q .  n). Then q belongs to the Fourier 
module of the modulated system. 

As stated before, a quasiperiodic structure may be 
embedded into a space with dimension equal to the 
rank of the Fourier module. The embedding is fixed 
as soon as the higher-dimensional lattice 2 is known. 

• , a s , t ) .  A basis for the reciprocal lattice Z* is (a*~,.. * 
For each atom in the quasiperiodic d-dimensional 
structure, there is a corresponding point in the unit 
cell of 2. If the higher-dimensional space V~ is the 
direct sum of the physical space Ve and the additional 
space 1/i, a point in Ve corresponding to an atom 
may be denoted by (r, 0), which has with respect to 
,~ lattice coordinates x~ = as*. (r, 0). So the informa- 
tion on the whole (infinite) quasiperiodic system is 
mapped into the unit cell of ,~. 

To find Z and the meaning of the scalar product 
in Vs one considers the symmetry group K of the 
diffraction pattern, which is a d-dimensional point 
group. For every element R of K one can write its 
action on the basis vectors of M*. 

Ra*= ~ F*(R)k,a*, i = l , . . . , n .  (2.7) 
k = l  

It is easily checked that the group of integer matrices 
F*(K) is a representation of K. As an integer rep- 
resentation it is not necessarily reducible, but, because 
K is finite, it is reducible as real representation. 
Indeed, the physical space Ve is left invariant by K. 

So one can write 

F*(K)=D*(K)GD*(K), (2.8) 

where the representations D * ( K ) a n d  D*(K) them- 
selves may also be reducible. Moreover, because K 
is finite, both of them are equivalent to orthogonal 
representations, Ke and Kt, respectively. So there is 
a positive definite metric in both Ve (the usual one, 
Ke being identical to K) and Vt. For the scalar 
product of (re, rt)  and (se, st) one can then take 
re • s~ + rt • st, which gives a positive definitive metric 
in K. 

The basis for the n-dimensional representation 
F*(K) then can be chosen to be {(a*,b*) ,  k =  
1 , . . . ,  n}. The j th  basis vector has as component in 
Ve the j th  basis vector a* of M*. So the Fourier 
module M* is just the projection of the lattice Z* in 
Vs, which is spanned by the basis of the representation 
F*(K). The reciprocal lattice 2 "  has a direct lattice 
Z that is spanned by {(ak, bk), k = 1 , . . . ,  n} which 
satisfies ak • a* + bk. b* = 6kl. The action of K on the 
basis of Z is given by the representation F(K) with 

F(R) = transpose [F*(R-~)].  (2.9) 

For a modulated crystal one may distinguish between 
main reflections, which correspond to the reciprocal 
lattice of the average structure, and satellites. This 
implies that K does not mix a * , . . . , a a *  and 
a*+l, • • •, a*.  This means that the matrices .r'(R) have 
the form 

r(R)=(re(R) o ) (2.10) 
\rM(R) r t ( g ) '  

where FE(K) and Ft(K) are, respectively, d- and 
( n - d ) - d i m e n s i o n a l  integral representations. The 
representation Fe (K)  is equivalent to the orthogonal 
representation Ke. It is, therefore, just a crystallo- 
graphic point group. Its representation space is VE 
and consequently one has bj --0 for j = 1 , . . . ,  d. 

Now the lattices Z and Z* are known and one can 
embed the quasiperiodic structure into Vs. One 
method follows from the observation that the projec- 
tion from Z* to M* is one to one. So for a vector q 
in (2.4), which is a linear integer combination of 
ad+l*, • • •, an*, the internal part ql is the same combi- 
nation of * b d + l , . . . , b * .  One may now construct a 
periodic array of (n - d)-dimensional  hypersurfaces 
in Vs as 

[ n + r j +  ~ fij(q) e x p ( i q . n + i q t . t ) , t ] ,  
q~H* 

j = l , . . . , s ;  n ~ A ;  t 6Vt .  (2.11) 

This set is invariant under lattice translations from 
Z. The surfaces are called atomic surfaces. They are 
here unbounded,  transverse (each intersects V~) and 
in one-to-one correspondence with the (n-d)-  
dimensional space Vt. 
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The other, more general, method, which is also 
applicable when one has a charge distribution instead 
of point atoms, starts from (2.2). Because k from the 
Fourier module M* is the unique projection of ks in 
,~*, a density function in the n-dimensional space is 
defined by 

p(r, t) = ~ t;(k) exp ( ik .  r+  ik~. t). (2.12) 
k ~ M *  

It is easily shown that this function is left invariant 
by the lattice ,? and, therefore, has n-dimensional 
space-group symmetry. 

Because the main reflections are mapped on main 
reflections by K, the latter is an ordinary d- 
dimensional crystallographic point group. Further- 
more, if a structure can be seen as modulated, the 
displ~tcements us(n) should be bounded. This means 
that on the average the atomic surfaces are parallel 
to V~. This implies that there cannot be so-called 
mixing symmetries which do not leave V~ invariant. 

2.2. Composite systems 

A composite structure is one consisting of a finite 
number (larger than one) of subsystems, each subsys- 
tem being a (possibly modulated) crystal with lattice 
periodic (average) structure. We denote the lattice 
for subsystem /~ by A~, and its reciprocal lattice by 
A*,. Suppose that {a~'*} forms a basis for A*. The 
total structure is quasiperiodic and not periodic if the 
A* lattices are mutually incommensurate. The Four- 
ier module is spanned by {a~'*} and, in addition, by 
eventual other modulation vectors. It is possible to 
give a description of such a modulated composite 
structure, but for the sake of simplicity we shall here 
suppose that modulation of a subsystem only occurs 
with the periodicity of another subsystem. Then the 
Fourier module is generated by {a~*}. Because the 
number of subsystems is finite the rank n is finite. 
Suppose {a*} is a basis for M*. Then one can express 
each a~'* in terms of the basis vectors, with integral 
coefficients (Janner & Janssen, 1980) 

a~* Y. ~" * (2.13) = Z i k a  k • 
k = l  

The embedding of the quasiperiodic structure follows 
from the construction of the lattice Z which can be 
found in the same way as in the preceding section. 
The difference from a modulated crystal phase is that 
here none of the subsystems plays, a priori, a special 
role. Therefore, b * , . . . ,  b* are not necessarily zero. 
Hence there are possibly n vectors bk* in the 
( n -  d)-dimensional space VI. 

The positions of the atoms in subsystem k~ can be 
written as 

r(njp ) o = r,~ +n,, d- r~j, (2.14) 

0 is the origin of A,,, n,, a lattice vector from where r,, 
A,  and r,j  inside the unit cell of the/zth lattice. 

A first method to determine the embedding in V~ 
uses a mapping ~r~ from VI to Ve defined by 

Z,k(bk. r , )a~.  (2.15) 7r~rI=Y.  ~ * 
ik 

One defines a set of (n - d)-dimensional hyperplanes 
by 

(r° + n~, + r~,j - Try, t, t), te  V~. (2.16) 

Its intersection with V~ (for t = 0) is clearly the com- 
posite structure (2.14). To see that it is invariant under 
,~, one takes a~* which is, according to (2.13), the 

= Zik(ak , bk*) e Suppose projection of ks Y.k ~ * ~*. 
(a,,, b,,) is a basis vector of Z. If one applies it to the 
set (2.16) one obtains 

(r° + n~, + L,j - 7r~,t + ~r~,bm + a,,, t). (2.17) 

The translation ~r~,bm +a, ,  belongs to A~,, as one sees 
from its scalar product with a~'*" 

a~'*. (1r~bm + a m ) =  a~'*. am + Y~ Z~(b*.  bin) 
! 

= ks. (a,,,, b,,,) = 0 (rood 2rr). 

(2.18) 

This implies what one wants to prove. Hence, (2.16) 
is invariant under Z and, therefore, the embedding 
of (2.14) for this ,?. This embedding is a generalization 
of that in Janner & Janssen (1980), where it is assumed 
that there is a host lattice for which one may choose 
d basis vectors with b* = 0. 

One can find the embedding also by determining 
the coordinates of (2.14) with respect to Z. The lattice 
coordinates of the points 

(r ° +n,, + r~,s, 0) (2.19) 

with respect to {(ai, bi)} are given by 

c , = a * . ( r °  +n,,+r~,~)=c°+x,, (2.20) 

with x~ = frac [n,, .  a*]. Because of the irrationality 
the points Y~ xi(ai, bi) are not isolated, but dense in 
hyperplanes. These planes are the atomic surfaces. 
By construction, the set of atomic surfaces has perio- 
dicity ,? and the structure (2.14) as intersection with 
v~. 

A point (r, 0) has lattice coordinates Xk = r .  a* with 
respect to Z and x~" = r . a ~ *  with respect to A~,. 
Because of (2.13) one has the relation 

X~ = ~ Z ~ k X  k. (2.21) 
k = l  

On the other hand, the coordinates Xk are not com- 
pletely determined by x~', because Z "  does not have 
an inverse, but only a pseudo-inverse (Mackay, 1977). 
If one diagonalizes Z ~' by left multiplication by an 
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integer d x d matrix P and right multiplication by an 
integer n x n matrix Q one has 

( P Z  t" Q)o = m,a o. (2.22) 

Define the diagonal matrix D with diagonal elements 
m~ -I . Then the pseudo-inverse 

Z," = Q transpose ( D ) P  (2.23) 

satisfies Z~'2*'Z ~" = Z ~', 2 " Z ' ~ 2  *' = Z, ~" and Z*'Z" = 
identity in d dimensions. 

The quantity Xk can be written as 

d 
Xk ~ -~" ~" . ,  (2.24) = ZkjX j "~ l)k, k = 1 , . .  n. 

j = l  

These equations can be solved from 

Z Z~xk = Z ~ ' "  ~ " " "  'r-' ik'L" kj'Aj "~ Z Z'~tk Dk 
k kj k 

= x~ + Y. Z~Vk.  ( 2 . 2 5 )  
k 

Hence x k is only determined up to vk in the null space 
of ZC However, if vk is in the null space, the line 
A YkVk(ak, bk) with A eR  belongs to (-Tr~,t,t) 
because for s = A ~,k l')kbk o n e  has 

~ E  V k a k " ~ T l ' P ' ( ~ E 1 ) k b k )  k (2.26) 

Therefore, the null space of Z t' corresponds exactly 
to the atomic surface for subsystem ~. 

The atomic surfaces are no longer flat if one takes 
modulation into account. In (2.14) one has to add a 
displacement term. If its Fourier module belongs to 
M* there is a displacement function for each be, which 
may be embedded, giving a displacement for each/z  
and for each value of ft. Moreover, the displacement 
has translation symmetry X. 

The fact that, generally, one cannot distinguish 
main reflections means that composite structures 
may have, in principle, point-group symmetry that 
is not a d-dimensional crystallographic one, or a 
mixing point group. We shall discuss two simple 
examples. 

Consider a three-dimensional composite struc- 
ture with five subsystems. Suppose e,, is a vector 
(cos 27rm/5, sin 27rm/5, 0) (m = 1 , . . . ,  5) and e6 = 
(0, 0, a). Consider five lattices A* spanned by e 6 / a  2, 
e~, and e,,+l (or et if be = 5). 

Furthermore, there is one atom per unit cell per 
0 subsystem and r,, = bee6/5. Then the Fourier module 

has rank 5. The system consists of layers with oblique 
symmetry, such that each layer is rotated over 72 ° 

with respect to the one above. The matrices Z ~' are ( ooo ) 
Z 1= 1 0 0 , 

0 0 0 

Z 2= 0 1 0 , . . . ,  

0 0 0 

Z 5= 0 0 0 . 

0 0 0 

(2.27) 

The symmetry group of M* is 5m, which is not a 
three-dimensional crystallographic point. The atomic 
surfaces are two-dimensional hyperplanes. The sym- 
metry of the embedded structure is a symmorphic 5D 
space group. 

As an example of a mixing symmetry consider the 
following 2D composite structure with four subsys- 
tems. The basis and origins with respect to an 
orthonormal reference frame in the plane are given 
as follows. For/x = 1 {(a, b), (0, 1); (0, 0)}, for/x = 2  
{ ( a , - b ) ,  (0, 1); ( - a / 2 , 1 + b / 2 ) } , f o r  ~ = 3  { ( c , - d ) ,  
(0, 1); (c, ½-d)},  and for / . t=4  {(c, d), (0, 1); (c/2,  
½+d/2)} with the relations c = a / ( l + 2 b ) ,  d =  
b/(1 + 2b). The Fourier module is of rank 3. The bases 
for A* are {( l /a ,  0) ( - b / a ,  1)}, {(I /a ,  0), (b /a ,  1)}, 
{(I/c, 0), (d / c ,  1)} and {(I/c,  0), ( - d / c ,  1)} for be= 
1, 2, 3, 4, respectively. 

° 1 o1) 1 o) 
- 1  ' 1 ' 

1 ' - 1  ' 

(2.28) 

when the basis of M* is chosen to be 

a * = ( [ l + b ] / a , O ) ,  a*E=(b/a,O), a3* = (0, 1). 

(2.29) 

These three vectors are projections of (a*, bk*) with 

b * = - b / a ,  b * = ( l + b ) / a ,  b * = 0 .  (2.30) 

Then the three vectors (a*, b*) span a cubic lattice, 
the atomic lines are straight lines, determined by Z".  
With respect to the cubic lattice they are 

(x, x, ;t), (0, ' ,  ½)+(m m -~,), 
(2.31) 

(½,', 0)+(~,-~,  ~), (½, 0, ½)+(p, o, o), 
where A, be, v, p are real numbers. This set of lines is 
invariant under the 3D space group Pn3. This implies 
systematic extinctions as a consequence of the non- 
primitive translations, and intensity equalities of spots 
connected by the tetrahedral point group. This shows 
that in principle such hidden symmetries may be 
present. Notice that the point group of M* is only 
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pmm. The standard embedding would give b * =  
p, b* = q, b* = 0 and no cubic lattice would result. It 
is only from the observation of additional symmetry 
relations that one gets a clue to the higher symmetric 
lattice. Also the phasonless quasicrystals discussed 
by Levitov (1989) belong to this category. 

2.3. Long-period out-of-phase boundary systems 

Out-of-phase boundaries in alloys give another 
example of  possibly quasiperiodic systems. A typical 
example is an alloy with approximate composition 
AB3 with atoms on the sites of a f.c.c, lattice. If the 
composition is AB3 three sites are taken by a B atom, 
one by an A atom. The result is simple cubic. This 
symmetry can be broken by out-of-phase boundaries. 
This is a collection of planes over which the site taken 
by the A atom changes. If the planes are periodically 
or quasiperiodically arranged the structure is 
quasiperiodic. It can be viewed as a displacive or as 
an occupation modulation (Plan6s, 1990). 

Suppose that the atoms are situated at positions rj 
in the unit cell and that the out-of-phase boundaries 
form a family of parallel planes, with wave vector q 
[perpendicular to the family, with length= 
(interplanar distance)-~]. If one crosses a boundary 
the atoms are displaced by a vector a such that rj + a = 
rj(mod A). In the conservative case ( q . a = 0 )  one 
can write the position of the atom originally at n + rj 
by n + rj + a ent [q.  n] = n + rj + (q.  n ) a -  frac [q.  n]a. 
Because frac[x] is a periodic function, this describes 
a displacively modulated crystal. Its basic lattice A 
is spanned by {a[----ai+(q.ai)a;  i = l , . . . , d } ,  the 
modulation function is frac[x] and the wave vector 
q. If the latter is incommensurate with respect to A*, 
the structure is incommensurate. The embedding then 
is given by 

As an example consider a f.c.c, lattice. Domains 
with A in (000) alternate with domains with A in 

! !  
(0~). The three other sites are taken by B's. So N - 2. 
The out-of-phase boundaries are supposed to have 
wave vector q in the x direction. The structure factor 
is given by 

F ( H )  = ~ {fAPj(q, n) + f a [  1 - p j ( q .  n)]} 
uj 

x exp (27ril l .  n), (2.34) 

which has wave vectors belonging to the Fourier 
module {ha* + kb* + lc+ mq}. If q = t~a* the lattice 2; 
is generated by ( a , - a ) ,  (b, 0), (c, 0) and (0, 1), with 
reciprocal lattice generated by (a*, 0), (b*, 0), (c*, 0) 
and (q, 1 ). Because of the centring the Fourier module 
vectors satisfy h + k = even and h + l = even. On the 
lines through n + r j  parallel to V~, the function pj(t) 
changes between 0 and 1 in a periodic way (Fig. 1). 

2.4. Quasicrystals 

In recent years, several phases of alloys have been 
reported with a diffraction pattern with a non-crys- 
tallographic point-group symmetry, such as a five- or 
eightfold axis. They have been called quasicrystals. 
Often these structures resemble decorated tilings, i.e. 
quasiperiodic space-filling patterns composed of 
volumes of a finite number of  shapes. Each volume 
of a certain type contains a number of atoms in a 
fixed arrangement. So they can be considered as a 
kind of unit cell. 

A generally accepted definition of quasicrystals is 
still missing. In earlier sections one has seen systems 
with non-crystallographic point-group symmetry 
which should be considered as composite structures. 
On the other hand, one can construct quasiperiodic 

(n + rj + (q.  n)a - frac [q.  n + t], t). (2.32) 

The vectors of  the Fourier module are 

k =  H - ( H . a ) q +  mq, H ~ A * ,  me~ ' .  (2.33) 

In the non-conservative case (q.  a # 0) the local 
composition changes near the out-of-phase boun- 
daries. In that case it is more convenient to describe 
the structure as an occupation modulated structure. 
The site j is occupied with probability pj by atom A 
and with probability 1 - p j  by an atom B. In the cubic 
structure pj = 1 for one site and Pk = 0 for the three 
other sites. In the presence of out-of-phase boun- 
daries the site nj is occupied with probability pj(q.  n), 
where pj is a periodic function with period N, depend- 
ing on the number of boundaries one has to cross to 
come back to the same situation. The embedding 
consists of  straight lines (n+  rj, t) on which the prob- 
ability function is periodic. This is not necessarily a 
step function. 

0 • 0 • 

• 0 • 0 

0 • 0 • 

• o • o : o  • o . o :  o . 

o • o . : .  o . o . : .  o 

• o . o : o  . o . o :  o . 
I I 

(a) 

(b) 

Fig. 1. Embedding of a system with incommensurate out-of-phase 
boundaries. (a) Distribution of atoms A and B over the sites 1 
(x + y = even) and 2 (x + y = odd). (b) Periodic distribution func- 
tion in n-dimensional space. On each line is indicated the proba- 
bility p of having an atom A at site 1. At the left the shape of 
this function is sketched. 
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tilings with a crystallographic point-group symmetry. 
So this point seems to be not too important. Also the 
fact that they resemble tilings is not general. 
Nevertheless, we shall restrict ourselves here mainly 
to tilings. 

Using the procedure from the preceding sections 
one can embed a quasicrystal starting from its diffrac- 
tion pattern and determining the lattices ,~ and ,~* 
from the representation F*(K) of the point group. 
If one knows £ it is straightforward to embed the 
structure into the higher-dimensional space. Here one 
inverts the procedure and starts from ,~. The periodic 
structure in Vs is obtained by attaching one or more 
atomic surfaces in each unit cell. For a tiling these 
atomic surfaces are parallel, otherwise the distance 
of the points would vary with the internal coordinate. 
For a modulated tiling bounded deviations from flat- 
ness are allowed. The atomic surfaces are not 
necessarily unbounded, like they were for modulated 
and composite structures. There is, however, a restric- 
tion to that. An atomic surface cannot end without 
the projection of the border on VI conciding with the 
border of an atomic surface nearby (in VE) in projec- 
tion. Otherwise atoms would disappear abruptly and 
eventually pop up at large distance, when the internal 
coordinate r~ changes. 

One way is considering as atomic surface a copy 
of the projection of the unit cell of 2 on VI. In each 
vertex of 2 such an atomic surface is attached. A 
well known example is the standard two-dimensional 
octagonal tiling. If e~ = [cos (mzr/4), sin (m~r/4)], 
the Fourier module is generated by (½Co,..., Ie3). The 
point group is 8mm, the lattice ,~* is generated by 
1(eo, eo), I(el, e3), I(e2, e2) and I(e3, el), and the lattice 
,~ by (Co, eo), (el, Ca), (e2,-e2) and (e3, el). The projec- 
tion of the unit cell is an octagon with diameter 
(1 +2~/2). If one puts such an octagon in each vertex 
of 2, the intersection with every 2D plane parallel to 
VE is formed by the vertices of a 2D octagonal tiling 
of the plane by squares and lozenges with an angle 
of 45 °. The symmetry group of the 4D structure is the 
symmorphic space group P8mm. If one shifts the 
physical space VE parallel to itself, the intersection 
point with the atomic surface in the origin moves over 
the octagon. When it reaches the border, the point in 
the origin vanishes, but another nearby point, which 
was not a vertex, now appears. For example, if the 
intersection point r~ with the physical space becomes 
( I + I  21/2, 0), thepoint  in the origin of VE 'jumps' to 

/ '1 1 , ' )1 /2  / ~  the point ~-~ , .  ,,,j. 
Atomic surfaces may also be determined by the 

requirement that a vertex has a given minimal distance 
to other vertices. For the 2D dodecagonal lattice 
which has rank 4 the projection of the 4D Wigner- 
Seitz cell has a dodecagonal shape. The requirement 
that the milaimal distance of vertices is (2--31/2) 1/2 
gives another dodecagon, which is rotated over 15 ° 
with respect to the first one. The first dodecagon 

has a diameter of 1+2(1/3) ~/2, the second one of 
(2--3'/2) 1/2. 

It is not necessary either to put atomic surfaces in 
the vertices of 2. If a point re is present in VE as 
soon as there are vertices aEI, • • •, aEp ( a l , . . .  np E 2 ) ,  
one has to attach a copy of the intersection of the 
projections of the atomic surfaces in a ~ , . . . ,  np on V1 
to a point in Vs that has external component rE such 
that the projection coincides with the intersection of 
projections. To keep the same symmetry group one 
applies the space group to the atomic surface found. 
Its orbit gives a finite number of atomic surfaces in 
the unit cell of ~. 

As an example, consider the case that each square 
of the octagonal tiling has an atom exactly in the 
middle. An atomic surface O in n ~ ~ gives a vertex 
if (at ,  0) belongs to/'2. This is the corner of a square 
if the origin belongs to the intersection o f /2 , / 2  + Co, 
/2 ÷ e2, /2 ÷ eo-t- e2 in one case, to that o f /2 , / 2  + el, 
/2 -t- e3 and 12 + el + e3 in the other. These intersections 
are squares (Fig. 2a). If one attaches a square at 
rE = 1(eo + e2) or re = ½(el + e3), respectively, such that 
its projection coincides with these squares in VI, these 
atomic surfaces produce the desired result. 
Analogously, if one wants to have an atom in the 
middle of each edge of the tiling, the intersection of 
projections of two atomic surfaces shifted over el 
( i=  1 , . . . , 4 )  is a hexagon (Fig. 2b), which is the 
shape of the desired atomic surface to be put in (½000) 
and its orbit (01000), (0010), (000½). The full structure 
then still has P8mm symmetry. 

A tiling may also have a non-symmorphic space 
group. The construction for such a structure is quite 
similar to that of the example above. Consider as an 
example the non-symmorphic 4D space group with 
point group 8mm. Its generators are (x,y, z, t ) ~  
(-t ,x,y,z),  (x,y,z,t)~(t+1, z+1, Y+1, x+1) and 
the lattice 2. The set of points (0000), 1 (~o~o), (o½o½) 
and ~2222~t!!!!~ in the unit cell is left invariant. Together 
with 2 they generate, however, a new octagonal lat- 
tice with basis vectors (0½0- ½), (~0~0),l t (0~0~),i i (_ i l ~0~0). 
Attachment of an octagon in each point with ~ of the 
area of the projection of the unit cell of 2 would give 
again an octagonal tiling. If one deforms the octagons 

"... [ 
_1 _ _  ~ I/~ ~ - ~  

(a) (b) 

Fig. 2. (a) Overlap region in projection on V I of four octagons at 
0000, 1000, 0010 and 1010. The shape of the overlap is the shape 
of an atomic surface projection for an atom inside a square. (b) 
Atomic surface for an atom on an edge. 
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differently for the four atomic surfaces in the unit 
cell and in such a way that they are left invariant by 
the tetragonal subgroup, the translation symmetry is 
again ,$. Because one wants to keep the situation that 
the border of a projected surface is the projection of 
another one, the deformation is in the horizontal 
direction parallel to VE. The atomic surfaces in (½~0) 
and (0½0½) have tetragonal site symmetry and can, for 
that reason, be divided into fundamental domains. 
Choosing a displacement (in the Ve direction) of one 
such domain of the surface at (½0½0) the displacement 
of the other and thoge at (0½0½) follow from the 
space-group transformation. In Fig. 3 an example of 
such a displacement is given. For vanishing displace- 
ment (e = 0) the symmetry group is a symmorphic 
space group with a translation group that has E as 
sublattice of index four. If e # 0 the symmetry is 
broken. The symmetry group is a non-symmorphic 
subgroup of the former, its translation subgroup is 
exactly E. The corresponding tiling (Fig. 4) is a defor- 
mation of the standard octagonal tiling. Its symmetry 
group is non-symmorphic. In principle such a sym- 
metry lowering could occur at a phase transition. 

Finally, it can be noticed that the requirement that 
the border of an atomic surface has the same projec- 
tion on V~ as that for another one, is no longer 
necessary if the quasiperiodic tiling is given by an 
occupation distribution with n-dimensional space- 
group symmetry. If two atomic surfaces that corre- 
spond to two V~ positions that cannot be occupied 
simultaneously have an overlap in projection on Vt 
one region is occupied with probability p. If this 

J2 / 

B C 
(1/2 0 ~/2 o) (01/2 0 ~/2) 

Fig. 3. Atomic surface for an octagonal tiling with non-symmor- 
phic space group. In each fundamental domain'its displacement 
is given: u~ = ee, where e~ are the four basis vectors (cos mcr/4, 
sin met~4) (m = 0, 1, 2, 3). 

Fig. 4. The octagonal tiling resulting from the atomic surface of 
Fig. 3. 

region is occupied, the other one is empty and vice 
versa. 

2.5. Comparison o f  the structures 

In the previous sections essentially three different 
types of quasiperiodic structures were discussed. Here 
we want to point out the differences and similarities. 
All these structures have sharp Bragg peaks that can 
be labelled with a number of integer indices that is 
larger than the dimension of the space. The charac- 
teristics become especially clear if one considers their 
embedding in a higher-dimensional space. 

Examples of incommensurate modulated crystal 
phases are y-Na2CO3, several A2BX4 compounds,  
like K2SeO4 and Rb2ZnC14, in certain temperature 
intervals, and quartz in a tiny interval between the a 
and the fl phase. The diffraction pattern consists of 
main reflections and satellites. Therefore, the point- 
group symmetry is crystallographic in physical space. 
The embedding into higher-dimensional space to get 
a periodic pattern consists of unbounded hypersur- 
faces which are in the average all parallel. This implies 
that mixing symmetries, which mix VE and V~, are 
not possible for these systems. The hypersurfaces may 
be straightened and an eventual occupation function 
defined on them changed to a constantjn a continuous 
way. The result is then a lattice periodic system in 
VE for which the Fourier module is a submodule of 
the quasiperiodic system. 

Examples of composite structures are 
Hg3-xAsF6, T'I'F7Is_x and intercalates. In these cases 
there is a host lattice, which gives a distinction 
between main reflections and satellites. In general, 
such a distinction is not possible. In that case also 
non-crystallographic point-group symmetry of the 
diffraction is possible. The embedding into higher- 
dimensional space consists of unbounded hypersur- 
faces, which are hyperplanes, eventually with a peri- 
odic modulation. The hyperplanes are not parallel. 
Therefore, mixed point-group symmetries are poss- 
ible. Moreover, they are spanned by lattice vectors, 
i.e. they are in a rational direction in E. Therefore, 
they cannot be made parallel in a continuous way 
without changing the Fourier module. There is a 
one-to-one correspondence between the points of an 
atomic surface and V~ and, therefore, every path in 
V~ has a unique image in each atomic surface. 

Examples of good quality quasicrystals are rather 
rare. One of the most ideal systems is A1CuFe. As 
model systems one has studied tilings of which the 
two- and three-dimensional Penrose tilings are the 
best known. Quasiperiodic tilings do not show a dis- 
tinction between main reflections and satellites. 
Therefore, non-crystallographic point groups are 
possible. In fact, most of the systems studied have 
pentagonal, octagonal, dodecagonal, decagonal or 
icosahedral symmetry, but one can construct 
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quasiperiodic hexagonal tilings as well. The embed- 
ding into the higher-dimensional space consists of 
bounded atomic surfaces, which share a border with 
another one, when projected on 1/i. The atomic 
surfaces are, on the average, parallel. Local absence 
of parallelism is due to modulation. Because of the 
parallelism they do not have mixing symmetries, 
although usually one lifts the Fourier module M* to 
a hypercubic or other high-symmetry lattice. 

Although the atomic surfaces are parallel, they can, 
generally, not be continuously changed to produce a 
periodic system. A path on Vt can be lifted to a path 
on atomic surfaces. One starts with a point P in V~ 
and considers an atomic surface for which the projec- 
tion on Vg contains P. If one follows the path, the 
corresponding point moves over the atomic surface. 
Because ~2 is bounded this point may arrive at the 
border. Because the projection of this border 
coincides with that of another atomic surface the 
lifted path may be continued on the latter (Fig. 5). 
This is equivalent to a motion over one atomic surface 
of which one identifies opposite parallel borders. The 
paths in V~ then give rise to paths on ~. Two closed 
paths are called equivalent if they can be deformed 
into each other in a continuous way. The equivalence 
classes form a group which is characteristic for the 
topology. For a periodic system the atomic surfaces 
fit together in net planes. Because of the lattice perio- 
dicity the topology of the atomic surface is that of 
an ( n -  d)-dimensional torus. So if the topology of 
the atomic surface is different from that of a torus, 
there is no possibility of changing the quasiperiodic 
structure in a continuous fashion into a periodic one. 
For a one-dimensional quasiperiodic structure of rank 
2 ( e . g .  the Fibonacci chain), the atomic surfaces are 
line elements. Identification of the end points gives 
a circle. Therefore, ,such a system can continuously 
be deformed to a periodic system. The octagonal 
atomic surface for the n = 4, d = 2 octagonal tiling 
has the topology of a 2D surface of genus two, the 
dodecagonal atomic surface for the standard n = 4, 
d = 2 dodecagonal tiling is associated with a surface 

Fig. 5. Lift of a closed path in Vt to a path over atomic surfaces. 
When the point in V~ comes back for the first time its lifted 
point has shifted over e 2 - e  3. After two loops the lifted path 
closes. The latter cannot continuously be contracted to a point. 

of genus three. The four pentagons for the n = 4, d -- 2 
Penrose tiling combine to two 2D surfaces of genus 
two. Therefore in these cases the quasiperiodic struc- 
tures are certainly not modulated periodic structures. 

The topology and the direction of the atomic sur- 
faces, therefore, are of importance for the characteriz- 
ation of the different incommensurate and 
quasiperiodic structures. This has already been dis- 
cussed by Frenkel, Henley & Siggia (1986) and by 
K16man (1990). For internal dimension larger than 
two there is the problem that there is not a topological 
classification available. 

3. Superspace groups 

The embedded lattice periodic structures in n 
dimensions have as symmetry group an n- 
dimensional space group G. The structure of such a 
group is similar to that of an ordinary 3D space group. 
The lattice Z spans the n-dimensional space Vs and 
is a normal subgroup of G. G itself is a discrete 
subgroup of the Euclidean group in n dimensions 
and the factor group G / Z  is isomorphic to the point 
group K, which is a subgroup of the n-dimensional 
orthogonal group. Mathematically speaking, G is an 
extension of K by 2 ~ 7/n. If the extension is trivial, 
G is a symmorphic group, the semidirect product of 
~'" and K. 

The abstract structure may be given using gen- 
erators and relations. Suppose K is generated by 
R~ , . . . ,  R p  through q relations @~,(Rl,. . . ,  R p ) =  1. 

The generators of Z are the basis translations as~ (i -- 
l , . . . ,  n). For each R • K one chooses one element 
r(R) in G which is mapped on R when taking the 
quotient G / Z .  Then G is generated by {a~, r(Rj); 
i = 1 , . . . ,  n; j = 1 , . . . ,  p} through the relations 

a~ + asj = a~j + a~i, i, j = 1 , . . . ,  n 

R j a , ,  = ~ F ( R j  ) k ,a ,k  , i = l , . . . , n ; j = l , . . . , p ( 3 . 1 )  
k = l  

• ~ , [ r (g l ) , . . . ,  r (Rp)]= g~,• ~, ~ = 1 , . . . ,  q. 

Any group for which one can find generators satisfy- 
ing these relations is isomorphic to G. 

This is a compact but somewhat implicit 
specification of G. A more common one is writing 
the elements of G in the Wigner-Seitz notation as 
{R[v(R)}, where R • K and v(R) a translation, not 
necessarily belonging to Z. The most explicit way of 
giving the group is by specifying the action of 
{R[v(R)} on a point with lattice coordinates x~ (i = 
1 , . . . ,  n) through 

{ g [ v ( g ) } : ( x l , . . . , x , , ) ~ ( X ' l , . . . , x ' ) .  (3.2) 

The translation part v(R) can be decomposed into 
an intrinsic part and an origin-dependent part. The 
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former is given, when R N is the unit element E, by 

N 

v'(R)=(1/N) ~, R%(R)-= N ~ v ( R ) ( m o d Z ) .  
p = l  

(3.3) 

It may occur that the intrinsic part of every v(R) 
vanishes, although the group is non-symmorphic. 
This is, for example, the case for the non-symmorphic 
n = 4, d -- 2 group for the octagonal point group 8 mm. 
However, this is not special for the higher dimensions, 
In three dimensions it occurs, for example, for 
I2~2~2~. It is the intrinsic part that is important for 
systematic extinctions. It is, usually, used in the nota- 
tion for the space group. 

In the case of modulated structures, the elements 
g of a space group G can be written as (ge, gr), when 
ge and gr act in Ve and Vr, respectively. The elements 
ge form a d-dimensional space group. It is, therefore, 
natural to use the symbols for these groups. One can 
use the fact that a basis for Z* can be chosen that 
has elements {(a*,0), (a*, b*); i =  1 , . . . ,  d; j =  d +  
1 , . . . ,  n}. Because {a*} is a basis for A* one can 
decompose a*+j into reciprocal-lattice vectors: 

d 

a*+j= ~ O~kak*. (3.4) 
k = l  

The basis of Z is then given by 

a,, = a,, - oj, bj (i = 1 , . . . ,  d); 
j = l  

(3.5) 
asm = (0, b,,_a) ( m = d + l , . . . , n ) ,  

where bi .  b* = 8ij. 
The matrix tr in (3.4) also has an invariant part tr ~ 

defined by 

c r '= (1 / lK[ )  Y Fr(R)-'trFe(R), (3.6) 
R e K  

which satisfies Fr (R) t r  ~= o'TE(R) for every R e  K. 
Now consider a translation v(R). If the external part 
is ve = Z~v,,a~ the internal part is 

d n - d  n - d  

V / - - - - - - E  E ° j i l ) i b j t - E  t ) d + j b j  
~=l j = l  j = l  

d n - d  

= r ( R ) -  Y. ~., trj, v, bj. (3.7) 
i = l  j = l  

It is easily shown that ~r(R) under a shift of origin 
(re, r t)  changes by ( 1 -  Rr)rr. This means that 

i i =1) ~" = ( l / N )  E R~ v , +  o'j,v, bj , (R N 
p = l  "" 

(3.8) 

is invariant under a change of origin, and can be used 
to indicate the intrinsic internal part. Notice that this 
is different from the internal component of the trans- 
lation ¢ ( R )  which is just (1/N)ZpR~;v~. 

When speaking of different space groups one 
usually means non-equivalent space groups. In 
ordinary crystallography two space groups are con- 
sidered to be equivalent if there is an affine transfor- 
mation {Sit}, consisting of a linear transformation S 
with positive determinant and a translation t which 
connects both groups: for each {RIv } in G there is 
an {R'lv' } in G' such that 

{g'l¢}-- {Slt}{g Iv} {Sit} -~. (3.9) 

This transformation describes a change of reference 
frame. The requirement det ( S ) > 0  guhrantees that 
the handedness is the same. With this definition one 
arrives at 230 space groups, belonging to 73 arith- 
metic, 32 geometric and 14 Bravais classes. For 
quasiperiodic systems one cannot simply take over 
this definition because it disregards the fact that VE 
is a distinct subspace. The affine transformation 
should keep this distinction, but on the other hand 
different embeddings of the same structure in VE 
should have equivalent space groups. Since the 
embedding is constructed starting from the diffraction 
pattern, two space groups for quasiperiodic systems 
are equivalent if they are connected by an affine 
transformation {Sit} such that the dual S* leaves Ve 
invariant and has positive determinant for its restric- 
tion to Ve. One has to distinguish three types. 

The first case is where one has a lattice of main 
reflections. The representation F(K) may be chosen 
in the form (2.10). Then its dual leaves Ve invariant. 
The matrix groups KE and KI are subgroups of O(d) 
and O(n-d) ,  respectively. Two point groups are 
geometrically equivalent if Ke is conjugated to K~ 
and Kt to K~ in their respective orthogonal groups. 
The matrix groups F ( K )  and F ' ( K )  are arithmetically 
equivalent if SF(K)=F'(K)S for some integral 
matrix S of the form 

s = ( S e  0 )  det (SE) = 1. (3.10) 
SM Sr ' 

Two space groups with given F(K) are equivalent if 
there is such an $ which in addition does not change 
F(K) and therefore is an element of the normalizer 
of F(K) in GL(n, Z) and which maps the translation 
parts of one group to those of the other, modulo a 
lattice translation and a shift of origin. In this way 
one finds 775 non-equivalent groups for modulated 
incommensurate systems with d - - 3  and n = 4. 

The second case is that of quasiperiodic crystals 
with a non-mixing point group, i.e. one which leaves 
VE and Vr invariant. So the elements of K are pairs 
(RE, R~). Also here K --- K '  if and only if KE -- K 
and Kr "-K~.  To specify an arithmetic point group 
one has to give the group F(K) and to specify the 
representation Dr(K) contained in F(K). I f x ( K )  is 
the character of this representation, the projection 
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operator of Vs to the representation space of Dt is 

~r1=(1/Igl) Y~ x*(R)F(R-I). (3.11) 
R c K  

Hence F ( K )  and F ' ( K )  are arithmetically equivalent 
if there is an element S ~ GL(n, Z) such that SF(R) = 
F'(R)S for all R ~ K and 

S nullspace [~R X*(R)F(R) ] 

=nullspace [~RX*(R)F'(R) ]. (3.12) 

For a given arithmetic point group F(R) with given 
D~ (K) one can determine all space groups. Two space 
groups from this set are equivalent if there is an 
element of the normalizer which satisfies (3.12) for 
F ' ( K )  = F(K) and which maps the translation parts 
of G to the corresponding ones of G', modulo lattice 
translations and origin shifts. 

In particular, when De and D~ are irreducible and 
non-equivalent, the situation simplifies. An element 
S of the centralizer is equivalent to the direct sum of 
multiples of the identity in both VE and V~. Therefore, 
both spaces are left invariant by S and (3.12) is 
satisfied. An element S of the normalizer gives an 
automorphism • of the group K. If D E [ ~ ( K ) ]  is 
equivalent to D e ( K ) ,  (3.12) is satisfied. Otherwise 
VE and V~ are interchanged and (3.12) is violated. 

The third case is that of a mixed point group. In 
that case the distinct space VE is not left invariant 
by the point group. Since no such systems are known 
at present, we shall skip their discussion. 

4. Self-similarity 

4.1. Self-similarity in one-dimensional systems 
Tilings and quasicrystals may have an additional 

symmetry property that is not present (or only 
trivially) in periodic crystals: scale invariance. Con- 
sider the diffraction pattern of a quasiperiodic system. 
If there is a number A such that for every vector of 
the Fourier module its )t multiple belongs also to the 
module, it means that M* has scale invariance. One 
can associate an integer matrix F(S) to this transfor- 
mation: 

Aa*= ~ F*(S)jiaj. (4.1) 
j = l  

The dual mapping F(S) maps 2 to itself. When is 
such a scale invariance present? Consider first a one- 
dimensional tiling of rank 2 and a basis transforma- 
tion P of the lattice Z. P has determinant D = +1 
and integer trace n. Then its eigenvalues are 

Ai.2=(n/2)+ l(n2-4D)l/2. (4.2) 

The eigenspace corresponding to )tj is V~. Then V~ = 

VIG V2. With this decomposition two vectors (a, b) 
and (Ala, A2b) span a lattice. This lattice can be 
chosen to be orthogonal or isometric. If D = -1 ,  one 
has A2 = -A~ -1 -= -A -1. Then {(a, Aa), (Aa - a)} spans 
a square lattice. I f D  = +1, one has A2 = A~ -~ = A. Then 
{(a, ;ta), (Aa, a)} spans a lattice with basis vectors of 
equal length. With the choice b = aA 1/2, the basis 
(a, ah ~/2), (ha - a, a/h 1/2_ ah 1/2) is orthogonal. A 
tiling obtained from this lattice by attaching line 
elements perpendicular to I/1 is, by construction, 
invariant under a scaling transformation with factor 
h (4.2). For D = - 1 ,  the incommensurability of the 
Fourier module (the ratio of two basis vectors modulo 
1) is h. This is also the case for the isometric lattice 
for D = ± I .  

Ve is the eigenspace for h and V~ that for D/A. If 
h is the eigenvalue (4.2) with the largest absolute 
value, P dilates V~ along VE and contracts it along 
V~. A vertex of 2; for which the atomic surface inter- 
sects VE will be mapped to a vertex with a smaller 
distance to Ve, which will, therefore, also give a vertex 
of the tiling. So each of the tiling vertices is mapped 
to another one, which means self-similarity. It is not 
even necessary that P be a basis transformation. Any 
integral matrix with [All > 1 and [h2[ < 1 gives a self- 
similar tiling. If the trace and determinant of P are 
denoted by n and D, respectively, this is the case for 
In[> [D+I[ .  So there is a dense set of 1D rank two 
tilings with self-similarity. 

The orbits of the vertices o f ~  under a self-similarity 
transformation lie on hyperbolae. Sometimes, there 
is a metrical tensor that is left invariant. On the basis 
of VE G VI, the condition for this is 

(~  D0/A)(b  b ) ( ~  D 0 / A ) = ( b  b). (4.3) 

This happens only if D = ±1 and a - - c - - 0 .  In that 
case the self-similarity transformations of the tiling 
corrrespond to a Minkowski transformation in V~ 
which leaves an indefinite metrical tensor invariant 
(Janner, 1988). 

4.2. Self-similarity for systems with dimensions 2 and 3 
The self-similarity of quasiperiodic tilings in a space 
of dimension larger than one is related to the point- 
group symmetry, because the origin of the isotropy 
of the scaling transformation is this symmetry. For 
simplicity we assume here that the n-dimensional 
point group F ( K )  has two physically non-equivalent 
irreducible components of the same dimension. Then 
consider an element S from the centralizer of F ( K ) ,  
i.e. a non-singular integer matrix such that SF(R)= 
F(R)S for every R ~ K. Because of Schur's lemma S 
is the direct sum of multiples of the identity in both 
subspaces. Because it is nonsingular S is equivalent 
to A l e ~ ( + A - ~ l t ) .  For a tiling with point group 
F(K), which can be obtained by the intersection with 
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Ve of atomic surfaces parallel to I/i, this means 
self-similarity with a factor A. 

This is the situation for the standard pentagonal, 
octagonal, decagonal, dodecagonal and icosahedral 
filings. As an example, consider the point group of 
the standard octagonal tiling. It is generated by R! 
and RE and has an element F(S) of the centralizer: 

( o0 i) F(RI)  = 0 0 
1 0 

,0 0 1 

0 0 0 ~ ) ,  

F ( R 2 ) =  0 0 1 (4.4) 
0 1 0 

1 0 0 

r ( s )  = (! 011 i) 
1 1 

- 0 1 

The matrix F(S) has two eigenvalues 1 + 21/2 and two 
eigenvalues 1 - 21/2. Their eigenspaces are V~ and VI, 
respectively. This implies that the tiling is invariant 
under S, which is a scale transformation with factor 
1 +2  I/2 (Fig. 6). 

If F(S) is an element of the normalizer, it induces 
an automorphism 7r. Similarly to what has been said 
in §3, DE may or may not be equivalent to DeTr. In 

Fig. 6. Standard octagonal tiling with self-similarity factor 1 + 2 I/2. 

Fig. 7. A dodecagonal tiling with self-similarity transformation 
consisting of a dilation (2+ 31/2) 1/2 and a rotation over ~r/12. 

the former case it follows from Schur's lemma that 
S leaves both Ve and VI invariant; and there is again 
an associated self-similarity transformation. If De is 
not equivalent with DE~ there is no such transforma- 
tion, because then S interchanges lie and VI. 

In the former case S leaves lie invariant, but it is, 
generally, not a multiple of the identity. Consider as 
an example a dodecagonal point group. Its generators 
F(Rt) and F(R: )  and an element of the normalizer 
are (000100 i) 

F ( R 1 ) =  0 1 0 

0 0 1 (0 o 0 
F ( R 2 ) =  0 0 1 

0 1 0 ' 

1 0 0 0 

F(S)  = 1 0 
1 1 

0 1 1 

(4.5) 

F(S) induces an automorphism ~r that sends R1 to 
RI and R2 to RIIR2 . It has four complex eigenvalues 
A, A*, A -1, A *-l with A = 2+31/2 exp(zr/12) and VE 
belongs to the eigenvalues A and A*. Therefore, the 
action of S on the 2D dodecagonal tiling is a scale 
transformation with factor (2+31/2) followed by a 
rotation over 15 ° (Fig. 7). This is in fact the symmetry 
of a spiral• 

As in the one-dimensional case it is not necessary 
that S has determinant equal to +1. If F(S) is an 
integer matrix such that it commutes wth every F(R) 
in F(K) it also gives rise to a scale transformation 
(Janssen, 1990)• A matrix F(S) with determinant 
different from one in absolute value corresponds to 
a centring of the lattice• 

These scale transformations do not leave the 
physical laws invariant. Nevertheless they play a role 
in the structure. They are directly related to the infla- 
tion and deflation rules used to construct filings. 
Furthermore, scale invariance has been shown to be 
of importance when studying electrons in a 
quasiperiodic chain. Finally, they are the same sym- 
metry transformations that play a role in regular 
fractals. 

5. Scale-space  groups 

In the preceding sections we have studied the crys- 
tallographic distance-preserving symmetries of 
quasiperiodic structures and their scaling properties. 
Both types of symmetry transformations can also be 
combined, just as one can combine rotations and 
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translations to Euclidean transformations. In this way 
one sometimes gets non-trivial results, comparable to 
the non-trivial combination of lattice translations and 
rotations in a non-symmorphic space group. 

The procedure is the same. Suppose F ( K )  is gener- 
ated by {F(R,)}, and the group of scale trans- 
formations by {F(S~)}. They satisfy relations 
• , ( R ~ , . . . , S I , . . . . ) = E .  One chooses the affine 
transformations { R l t g }  in such a way that as 
many as possible components of tR a re  zero, using 
a shift of origin. Then the relations 
~ ,  ({ gl  It RI}, • • •, { SI Its }...) = { 110} give the sufficient 
and necessary conditions for the non-primitive trans- 
lations t p..s. 

Consider as an example the infinite group gener- 
ated by 

The second matrix gives a self-similarity transforma- 
tion with factor 3+2r ,  where r=(5~/2-1) /2 .  The 
group generated by F(R)  only has trivial extensions 
because, since d e t [ E - F ( R ) ]  ~ 0, there is an origin 
such that tR = 0. The same holds for the group gener- 
ated by F(S).  For the group generated by (5.1), one 
may again choose tR = 0, but then no freedom is left 
for changing ts. In fact, we have chosen the origin 
in a centre of inversion. If ts = (a, b) it follows from 
the relations R E= E, SR = RS that (a, b ) -  (a, b) - -0  
(mod 1) and that ( - a ,  b)---(a, b). Therefore, there 
are four non-equivalent extensions, corresponding to 
(a, b) = (0, 0), (½, 0), (0, ½) and (½, ½), respectively. By 
a proper choice of basis the last three can be identified. 
So there exist non-trivial scale-space groups. They 
may lead to scale-invariant decorations (Janner & 
Janssen, 1990), but it is not clear whether they have 
relevance for physical properties. 

6. Concluding remarks 

To describe the symmetry of quasiperiodic structures, 
one has to revise the crystallographic notions. 
Because quasiperiodic structures are restrictions of 
periodic structures to physical space, one may con- 
sider the higher-dimensional space group of that peri- 
odic structure as the symmetry of the quasiperiodic 
structure. As a matter of fact, relations between spot 
intensities and systematic extinctions which are pres- 

ent in the higher-dimensional structure as a con- 
sequence of the space group are also present for the 
quasiperiodic structure, because the Fourier module 
is the projection of the reciprocal lattice Z* 

An n-dimensional space-group element acts on the 
physical structure as a distance-preserving transfor- 
mation plus a compensating transformation in inter- 
nal space. For a modulated structure a translation in 
internal space is just a symmetry-restoring phase shift 
of the modulation. In general, the internal transfor- 
mation is analogous to a gauge transformation. This 
has been discussed by Janner & Janssen (1977). 

For a quasiperiodic structure with rank exceeding 
the dimension, the intersection points of planes 
parallel to VE, going through the lattice points of Z, 
form a dense set. For any two points from this set, 
there is a translation for which the internal part con- 
nects them. In physical space the system is just shifted 
over the external part of the translation. Such a shift 
keeps the physics the same. The same is true for an 
n-dimensional reducible space-group element. Gen- 
erally, it is not true for other groups, like scale-space 
groups or groups with a mixing point group. Such 
transformations may nevertheless have observable 
consequences. 
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